Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean (2024)

Introduction

The use of plastic is very widespread in the world and the spread of plastic waste has also reached the oceans. Observing marine debris is a serious threat to the management system of this pollution. Because it takes years to recycle the current wastes, while their amount increases every day. The importance of mathematical models for plastic waste management is that it provides a framework for understanding the dynamics of this waste in the ocean and helps to identify effective strategies for its management. In this paper, we study the asymptotic behavior of waste plastic process management (WPM) in the ocean using a three-compartment mathematical model consisting of plastic waste, marine debris, and recycled materials. This model can be described by the following nonlinear ordinary differential equation system1.

$$\begin{aligned} \begin{aligned} W'(t)&=\lambda -\gamma W(t)-\beta M(t) W(t)+\mu R(t),\\ M'(t)&=\beta M(t) W(t) -\alpha M(t),\\ R'(t)&=\gamma W(t)+\alpha M(t)-\left( \mu +\theta \right) R(t). \end{aligned} \end{aligned}$$

(1)

In this system, the time t (with a unit such as one day) is considered positive \((t>0)\) and the initial values of the variables are assumed to be non-negative values as follows \(W(0)=W_{0}, M(0)=M_{0}, R(0)=R_{0}\). In this model, by W(t) we denote the amount of waste plastic material, M(t) is the marine debris, and R(t) represents the process of recycling. The descriptions of the coefficients of the WPM system are as follows. The parameter \(\alpha\) is the marine debris rate to recycle and the waste rate to become marine denoted by \(\beta\). Moreover, \(\gamma\) is the waste rate to be recycled directly without utilizing marine debris and \(\lambda\) describes the new waste rate to be reproduced. The parameter \(\mu\) is the recycled waste rate to be reproduced as new waste and finally by \(\theta\) we denote the recycled waste rate to be lost.

Using the properties of the Levenberg–Marquardt backpropagation (LBMBP), authors in1 designed an artificial neural network method for solving this model computationally. In2, the model was solved using two schemes based on a modification of the Morgan–Voyce (MV) functions by applying directly matrix collocation procedure and by using the quasi-linearization together with the modified MV collocation method. As mentioned, in previous studies, this model has been investigated numerically, but so far, its dynamics have not been comprehensively discussed in any work. In the present study, we intend to analyze this model with mathematical tools, although we also test the obtained results by simulation and numerical examples.

Compartmental models have been used in mathematical modeling to study the epidemics and ecological systems3,4,5,6. Also, there are some three-compartmental epidemic models to study diseases, including SIR or SIS models with vaccination or quarantine7,8,9,10,11, which may be useful for studying this model due to the nature of the cycle of propagation and recycling of plastic waste in the ocean. But according to our knowledge, the system studied in none of the works are completely compatible with the system related to this phenomenon in this paper.

In the present work, we first give some basic properties of the model in Section“The description of the model”. After showing that the solutions of the system are always non-negative, we obtain two equilibrium points for the system along with their existence conditions. Then, by applying the next generation method, we determine the basic reproduction number \({{\mathcal {B}}}{{\mathcal {R}}}\) for the model. The investigation of the long-term behavior of the model as a dynamical system is done through the analysis of the WPM system (1) stability at the equilibrium points in Section“Stability of the model”. Also, we state and prove the conditions in terms of this quantity under which the system is stable at each equilibrium point. The bifurcations of the model and the sensitivity analysis of the parameters are discussed in Sections“Bifurcations of the model” and “Sensitivity analysis”, respectively. Numerical experiences and simulation of the solutions of the system are also carried out via some examples in Section“Numerical experiments”. Finally, the results of the paper are summarized as conclusions.

The description of the model

In this section we obtain some basic properties of the model such as the invariant set of solutions, the equilibria of the model and the basic reproduction number.

Non-negativity of solutions

The following lemma states that the solutions of system (1) remain non-negative with positive initial values.

Lemma 1

The set \(\Omega =\{(W, M, R): W\ge 0, M\ge 0, R\ge 0\}\) is a positive invariant for system (1).

Proof

Assume \(W(0)>0\), \(M(0)>0\) and \(R(0)>0\). We let

$$\begin{aligned} \tau =\sup \{t>0 : W(t)\ge 0, M(t)\ge 0, ~ \text {and} ~ R(t)\ge 0\}, \end{aligned}$$

and so \(\tau >0\) since all variables are continuously differentiable. Now, if \(\tau =+\infty\) then the positivity of solutions holds, but if \(0<\tau <+\infty\) then one of the variables is zero at \(\tau\) and for \(t>\tau\) is negative. Assume that \(W(\tau )=0\) and \(W(t)<0\) for \(t>\tau\). From the differential equation corresponding to W we find

$$\begin{aligned} W'(\tau )=\lambda - \gamma W(\tau ) - \beta M(\tau ) W(\tau ) + \mu R(\tau ) = \lambda + \mu R(\tau ) \ge 0, \end{aligned}$$

Therefore W is non-decreasing at \(\tau\) and \(W(t)\ge 0\) for \(t>\tau\). This is a contradiction with the previous assumption for \(\tau <+\infty\) and thus for all t we have \(W(t)\ge 0\). We can use a similar argument for variables M and R and conclude \(M(0)\ge 0\) and \(R(0)\ge 0\) for all \(t>0\). Therefore the solutions of the system (1) are always non-negative and \(\Omega =\{(W, M, R): W\ge 0, M\ge 0, R\ge 0\}\) is positive invariant for solutions of system (1). \(\square\)

Equilibria of the model

Solving the following system of equations gives the equilibrium points (in the format of \(({{\bar{M}}},{{\bar{W}}}, {{\bar{R}}})\)) for model (1):

$$\begin{aligned} \begin{aligned}{}&\lambda -\gamma {{\bar{W}}} -\beta {{\bar{M}}} {{\bar{W}}} +\mu {{\bar{R}}}=0\\&\beta {{\bar{M}}} {{\bar{W}}} -\alpha {{\bar{M}}}=0\\&\gamma {{\bar{W}}} + \alpha {{\bar{M}}} -\left( \mu + \theta \right) {{\bar{R}}}=0. \end{aligned} \end{aligned}$$

(2)

Two equilibrium points are obtained; the equilibrium

$$\begin{aligned} E^0=(M^0,W^0,R^0)=\left( 0, \frac{ (\mu +\theta )\lambda }{\theta \gamma }, \frac{\lambda }{\theta }\right) \end{aligned}$$

if \({{\bar{M}}}=0\), and the equilibrium

$$\begin{aligned} E^*=(M^*,W^*,R^*)=\left( \frac{(\mu +\theta )\lambda }{\theta \alpha }-\frac{\gamma }{\beta },\frac{\alpha }{\beta } , \frac{\lambda }{\theta }\right) . \end{aligned}$$

when \({{\bar{M}}}>0\).

Basic reproduction number

First, we note that \(M^*\) in equilibrium point \(E^*\) can be written as

$$\begin{aligned} M^*=\frac{(\mu +\theta )\lambda }{\theta \alpha }-\frac{\gamma }{\beta } =\frac{(\mu +\theta ) \lambda \beta - \gamma \alpha \theta }{\alpha \theta \beta }. \end{aligned}$$

Thus, the equilibrium point \(E^*\) exists if and only if

$$\begin{aligned} M^*>0 \Leftrightarrow \frac{\gamma }{\beta }\Big (\frac{\beta \lambda (\mu +\theta )}{\gamma \alpha \theta }-1\Big )>0. \end{aligned}$$

Therefore if we let \({{\mathcal {B}}}{{\mathcal {R}}}=\frac{\beta \lambda (\mu +\theta )}{\alpha \gamma \theta }\), then \(M^*=\frac{\gamma }{\beta }({{\mathcal {B}}}{{\mathcal {R}}}-1)>0\) if and only if \({{\mathcal {B}}}{{\mathcal {R}}}>1\) and thus \(E^*\) exists if and only if \({{\mathcal {B}}}{{\mathcal {R}}}>1\). On the other hand, considering that the components of \(E^0\) are always non-negative, we have stated the following lemma.

Lemma 2

For model (1), the equilibrium point \(E^0\) always exists, while the equilibrium point \(E^*\) exists under the condition that \({{\mathcal {B}}}{{\mathcal {R}}}>1\).

We call \({{\mathcal {B}}}{{\mathcal {R}}}\) as the basic reproduction number of the WPM model. The basic reproduction number for a compartmental model is actually defined as the number of secondary reproductions in a completely hom*ogeneous population by a member of a compartment that causes the spread of undesirable properties in other compartments12. In the preceding discussions, this quantity was implicitly given by using the condition that the amount of marine debris (\(M^*\)) is positive at the equilibrium point \(E^*\). Moreover, it can be also obtained by the next generation matrix method as the spectral radius of the Jacobian matrix of the model at \(E^0\) as follows13.

In this method we rewrite the second equation in (1) corresponding to the marine debris (compartment M) as

$$\begin{aligned} M'(t)=\beta M(t) W(t) -\alpha M(t) ={\mathcal {F}}-{\mathcal {V}}, \end{aligned}$$

where \({\mathcal {F}}=\beta MW\) and \({\mathcal {V}}=\alpha M\). Here, \({\mathcal {F}}\) refers to the terms in the equation that generate new amounts of marine debris (M), and \({\mathcal {V}}\) consists of terms that represent the transmissions between compartment M and other compartments.

Now supposing \(f=\frac{\partial {\mathcal {F}}}{\partial {M}}({E^0})= \beta W^0 = \frac{\beta \lambda (\mu +\theta )}{\gamma \theta }\) and \(v=\frac{\partial {\mathcal {V}}}{\partial {M}}({E^0})=\alpha\), then the basic reproduction number of the model is obtained by

$$\begin{aligned} {{\mathcal {B}}}{{\mathcal {R}}}=\rho (f v^{-1})= \frac{\beta \lambda (\mu +\theta )}{\alpha \gamma \theta }. \end{aligned}$$

(3)

Stability of the model

In the paper2, the authors studied the local asymptotic stability of the model. By examining the eigenvalues of the Jacobian matrix at the equilibrium points of the model and using the Routh-Hurwitz criterion14, they determined the conditions under which the eigenvalues of the Jacobian matrix have a negative real part and showed that when \({{\mathcal {B}}}{{\mathcal {R}}}<1\), the system is stable at equilibrium point \(E^0\) and if \({{\mathcal {B}}}{{\mathcal {R}}}>1\), this point is unstable and equilibrium point \(E^*\) is stable.

Now, in the following we investigate the global stability of the model at the equilibria of the system (1).

Theorem 1

The equilibrium \(E^0\) of model (1) is globally asymptotically stable when \({{\mathcal {B}}}{{\mathcal {R}}}\le 1\).

Proof

For this purpose, we use the basic concept of global stability that states under the given conditions, all solutions of the model converge to the equilibrium point \(E^0\) starting from any point15.

From third equation in system (1) we have

$$\begin{aligned} \begin{aligned} R(t)&=e^{-(\mu +\theta )t}\left\{ \int _0^t \left( \gamma W(s) + \alpha M(s) \right) e^{(\mu +\theta )s} ds + R(0)\right\} \\&=R(0) e^{-(\mu +\theta )t} + \int _0^t \left( \gamma W(s) + \alpha M(s) \right) e^{-(\mu +\theta )(t-s)} ds. \end{aligned} \end{aligned}$$

The first equation in (1) implies \(W'(t)\le \lambda -\gamma W(t)+\mu R(t)\) and thus we get

$$\begin{aligned} \begin{aligned} W(t)&\le e^{-\gamma t} \left\{ \int _0^t \left( \lambda + \mu R(s)\right) e^{\gamma s} ds +W(0)\right\} \\&=W(0) e^{-\gamma t} + \int _0^t \left( \lambda + \mu R(s)\right) e^{-\gamma (t-s)} ds\\&=W(0) e^{-\gamma t} +\lambda \int _0^t e^{-\gamma (t-s)} ds + \mu R(0) \int _0^t e^{-(\mu +\theta )} e^{-\gamma (t-s)} ds\\&\quad +\mu \gamma \int _0^t \left( \int _0^s W(v) e^{-(\mu +\theta )(s-v)} dv\right) e^{-\gamma (t-s)} ds\\&\quad +\mu \alpha \int _0^t \left( \int _0^s M(r) e^{-(\mu +\theta )(s-r)} dr\right) e^{-\gamma (t-s)} ds\\&= W(0) e^{-\gamma t} +\frac{\lambda }{\gamma } \left( 1-e^{-\gamma t}\right) -\frac{\mu R(0)}{\mu +\gamma -\theta } \left( e^{-(\mu +\theta )t}-e^{-\gamma t}\right) \\&\quad -\frac{\mu \gamma }{\mu +\gamma -\theta } \left( \int _0^t W(s) e^{-(\mu +\theta )(t-s)} ds-\int _0^t W(s) e^{-\gamma (t-s)} ds - e^{-\gamma t}\right) \\&\quad -\frac{\mu \alpha }{\mu +\gamma -\theta } \left( \int _0^t M(s) e^{-(\mu +\theta )(t-s)} ds-\int _0^t M(s) e^{-\gamma (t-s)} ds - e^{-\gamma t}\right) . \end{aligned} \end{aligned}$$

Therefore we have

$$\begin{aligned} \begin{aligned} W(t)&\le W(0) e^{-\gamma t} +\frac{\lambda }{\gamma } \left( 1-e^{-\gamma t}\right) -\frac{\mu R(0)}{\mu +\gamma -\theta } \left( e^{-(\mu +\theta )t}-e^{-\gamma t}\right) \\&\quad -\frac{\mu }{\mu +\gamma -\theta } \left\{ \int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-(\mu +\theta )(t-s)} ds \right. \\&\quad \left. -\int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-\gamma (t-s)} ds -(\gamma +\alpha ) e^{-\gamma t}\right\} . \end{aligned} \end{aligned}$$

Now, from the second equation in system (1) we obtain

$$\begin{aligned} \begin{aligned} M'(t)&=\beta M(t) W(t) -\alpha M(t) \\&\le \beta M \left\{ \frac{\lambda }{\gamma } +\left( W(0)-\frac{\lambda }{\gamma }+\frac{\mu R(0)}{\mu +\gamma -\theta }+\frac{\mu (\gamma +\alpha )}{\mu +\gamma -\theta }\right) e^{-\gamma t} \right. \\&\quad -\frac{\mu R(0)}{\mu +\gamma -\theta }e^{-(\mu +\theta )t} -\frac{\mu }{\mu +\gamma -\theta } \int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-(\mu +\theta )(t-s)} ds\\&\quad \left. +\frac{\mu }{\mu +\gamma -\theta } \int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-\gamma (t-s)} ds -\frac{\alpha }{\beta } \right\} . \end{aligned} \end{aligned}$$

We consider two cases; if \(\mu +\gamma >\theta\), then

$$\begin{aligned} \begin{aligned} M'(t)&\le \beta M \left\{ \frac{\lambda }{\gamma } +\left( W(0)-\frac{\lambda }{\gamma }+\frac{\mu R(0)}{\mu +\gamma -\theta }+\frac{\mu (\gamma +\alpha )}{\mu +\gamma -\theta }\right) e^{-\gamma t} \right. \\&\quad \left. +\frac{\mu }{\mu +\gamma -\theta } \int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-\gamma (t-s)} ds -\frac{\alpha }{\beta } \right\} , \end{aligned} \end{aligned}$$

and thus there exists \(\tau _1>0\) such that for \(t>\tau _1\)

$$\begin{aligned} M'(t)\le \beta M \left\{ \frac{\lambda }{\gamma } -\frac{\alpha }{\beta } \right\} , \end{aligned}$$

since \(\frac{\theta }{\mu +\theta }<1\) and \({{\mathcal {B}}}{{\mathcal {R}}}\le 1\) implies \(\frac{\lambda }{\gamma } < \frac{\alpha }{\beta }\). Therefore \(\mathop {\lim }\limits _{t\rightarrow \infty } M(t) =0\) and in the followig limiting system

$$\begin{aligned} \begin{aligned} W'(t)&=\lambda -\gamma W(t)+\mu R(t),\\ R'(t)&=\gamma W(t)-\left( \mu +\theta \right) R(t), \end{aligned} \end{aligned}$$

(4)

we find that \(\mathop {\lim }\limits _{t\rightarrow \infty } W(t) =\frac{\lambda (\mu +\theta )}{\gamma \theta }=W^0\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } R(t) =\frac{\lambda }{\theta }=R^0\). Therefore all trajectories of (4) converge to \((W^0, R^0)\) and the equilibrium \(E^0\) is globally asymptotically stable.

But, if \(\mu +\gamma <\theta\) we have

$$\begin{aligned} \begin{aligned} M'(t)&\le \beta M \left\{ \frac{\lambda }{\gamma } +\left( W(0)-\frac{\lambda }{\gamma }+\frac{\mu R(0)}{\mu +\gamma -\theta }+\frac{\mu (\gamma +\alpha )}{\mu +\gamma -\theta }\right) e^{-\gamma t} \right. \\&\quad \left. -\frac{\mu }{\mu +\gamma -\theta } \int _0^t \left( \gamma W(s)+\alpha M(s)\right) e^{-(\mu +\theta )(t-s)} ds -\frac{\alpha }{\beta } \right\} , \end{aligned} \end{aligned}$$

and with similar arguments we find again \(\mathop {\lim }\limits _{t\rightarrow \infty } M(t) =0\) and thus the desired result is obtained. \(\square\)

The next theorem states the conditions under which the equilibrium \(E^*\) is globally stable. For this purpose we use the Lyapunov’s direct method16 which has also been employed by many authors17,18,19,20,21

Theorem 2

The equilibrium \(E^*\) of model (1) is globally asymptotically stable if \({{\mathcal {B}}}{{\mathcal {R}}}>1\) and \(\alpha =\gamma\).

Proof

Using combinations of composite quadratic and common quadratic terms17, we consider function \(L:\left\{ (M, W, R)\in \Omega : M, W, R >0\right\} \rightarrow {\mathbb {R}}\) as follows

$$\begin{aligned} L(M, W, R)=\frac{\theta }{2}(R-R^*)^2+\frac{\alpha }{2} \left[ (W-W^*)+(M-M^*)+(R-R^*)\right] ^2. \end{aligned}$$

Function L is \(C^1\) on the interior of defined domain set, and we also see \(L\ge 0\), the equilibrium point \(E^*\) is the global minimum of L, and moreover \(L(E^*) = 0\). By differentiating L we get

$$\begin{aligned} \begin{aligned} \frac{dL}{dt}&=\theta (R-R^*)R' +\alpha \left[ ((W-W^*)+(M-M^*)+(R-R^*)\right] \left( W'+M'+R'\right) \\&=\theta (R-R^*)\left[ \gamma W +\alpha M -(\mu +\theta ) R\right] +\alpha \left[ (W-W^*)+(M-M^*)+(R-R^*)\right] (\lambda -\theta R) \end{aligned} \end{aligned}$$

From system (2) we have

$$\begin{aligned} \begin{aligned}{}&\gamma W^* + \alpha M^* -\left( \mu + \theta \right) R^*=0\\&\lambda = \theta R^*. \end{aligned} \end{aligned}$$

Thus we can write

$$\begin{aligned} \begin{aligned} \frac{dL}{dt}&= \theta (R-R^*)\left[ \gamma (W-W^*) +\alpha (M-M^*) -(\mu +\theta ) (R-R^*)\right] \\&\quad +\alpha \left[ (W-W^*)+(M-M^*)+(R-R^*)\right] \left( -\theta (R-R^*)\right) \\&=(\gamma \theta -\alpha \theta )(W-W^*)(R-R^*)-\left( (\mu +\theta )\theta +\alpha \theta \right) (R-R^*)^2, \end{aligned} \end{aligned}$$

and thus since \(\gamma =\alpha\), we have

$$\begin{aligned} \frac{dL}{dt}=-\left( (\mu +\theta )\theta +\alpha \theta \right) (R-R^*)^2\le 0. \end{aligned}$$

Also, \(\frac{dL}{dt}=0\) if and only if \(R=R^*\) (which implies from (1) \(M=M^*\) and \(W=W^*\)) and

$$\begin{aligned} \left\{ (M, W, R)\in \Omega : \frac{dL}{dt}=0 \right\} =\left\{ E^* \right\} . \end{aligned}$$

Therefore the equilibrium \(E^*\) is globally asymptotically stable according to LaSalle’s invariant principle16. \(\square\)

Bifurcations of the model

We now consider the behavior of the model when \({{\mathcal {B}}}{{\mathcal {R}}}=1\). For this purpose we choose \(\beta\) as the bifurcation parameter and from \({{\mathcal {B}}}{{\mathcal {R}}}=1\) we find

$$\begin{aligned} \beta ^*=\frac{\alpha \gamma \theta }{\lambda (\mu +\theta )}. \end{aligned}$$

To identify the bifurcations that model (1) exhibits, we apply center manifold theory22. According to this method we need to carry out the following change of model variables. Let \(x_1=W\), \(x_2=M\) and \(x_3=R\) by using vector \(X=(x_1,x_2,x_3)^T\), the waste plastic management model can be rewritten in the form \(X'=F(X)\) with \(F=(f_1, f_2, f_3)^T\) as follows

$$\begin{aligned} \begin{aligned} x_1'&=\lambda -\gamma x_2-\beta x_1 x_2+\mu x_3,\\ x_2'&=\beta x_1 x_2 -\alpha x_2,\\ x_3'&=\gamma x_1+\alpha x_2-\left( \mu +\theta \right) x_3. \end{aligned} \end{aligned}$$

(5)

The jacobian matrix is obtained as

$$\begin{aligned} J= \left( \begin{array}{ccc} -\gamma -\beta x_2 & -\beta x_1 & \mu \\ \beta x_2 & \beta x_1 -\alpha & 0 \\ \gamma & \alpha & -(\mu + \theta ) \\ \end{array} \right) , \end{aligned}$$

and at equilibrium \(E^0\) for \(\beta *\) (when \({{\mathcal {B}}}{{\mathcal {R}}}=1\)) is

$$\begin{aligned} J_{\beta ^*}^0=J(E^0, \beta ^*) = \left( \begin{array}{ccc} -\gamma & -\alpha & \mu \\ 0 & 0 & 0 \\ \gamma & \alpha & -(\mu + \theta ) \\ \end{array} \right) , \end{aligned}$$

because \(\frac{\beta ^* \lambda (\mu +\theta )}{\gamma \theta }=\alpha\). The eigenvalues of \(J_{\beta ^*}^0\) are \(\lambda _1=0\) and those for the sub-matrix

$$\begin{aligned} \Psi =\left( \begin{array}{cc} -\gamma & \mu \\ \gamma & -(\mu + \theta ) \\ \end{array} \right) . \end{aligned}$$

(6)

For this matrix we obtain

$$\begin{aligned} trace(\Psi )=-(\mu +\theta +\gamma )<0 ~~ \text {and} ~~ det(\Psi )=\gamma (\mu +\theta )-\mu \gamma = \gamma \theta >0, \end{aligned}$$

and thus its eigenvalues have negative real part14.

The right eigenvector \(u=\left( u_1, u_2, u_3\right) ^T\) of matrix \(J_{\beta ^*}^0\) corresponding to the zero eigenvalue is obtained by solving the system \(J_{\beta ^*}^0 u=0\) and we get \(u_1=-\alpha\), \(u_2=\gamma\) and \(u_3=0\). Besides, the components of the left eigenvector \(v=\left( v_1, v_2, v_3\right)\) corresponding to the zero eigenvalue can be found from \(v\dot{u}=1\) as are gotten as \(v_1=0\) and \(v_2=\frac{1}{\gamma }\) ad \(v_3=0\). It can easily be checked that \(v J_{\beta ^*}^0=0\). According to the center manifold theory we have to calculate the two following coefficients

$$\begin{aligned} a = \sum \limits _{k,i,j = 1}^3 {{v_k}{u_i}{u_j}} \frac{{\partial ^2}{f_k}}{\partial {x_i}\partial {x_j}}, \quad b = \sum \limits _{k,i = 1}^3 {{v_k}{u_i}} \frac{{\partial ^2}{f_k}}{\partial {x_i}\partial {\beta }}. \end{aligned}$$

All second order partial derivatives of \(f_k, (k=1, 2, 3)\) with respect to \(x_i, (i=1, 2, 3)\) and \(\beta\) are calculated at \((E^0, \beta ^*)\) with \(E^0=(x_1^*, x_2^*, x_3^*)=\left( \frac{\lambda (\mu +\theta )}{\gamma \theta }, 0 , \frac{\lambda }{\theta }\right)\). Since \(v_1\), \(v_3\) and \(u_3\) are zero, we only need to calculate the following second order partial derivatives:

$$\begin{aligned} \begin{aligned} \frac{{\partial ^2}{f_2}}{\partial {x_2}\partial {x_1}}(E^0, \beta ^*)&= \frac{\partial }{\partial x_2}\left( \beta x_2\right) \Big |_{(E^0, \beta ^*)} = \beta ^*,\\ \frac{{\partial ^2}{f_1}}{\partial {x_1}\partial {\beta }}(E^0, \beta ^*)&=\frac{\partial }{\partial x_1}\left( x_1 x_2\right) \Big |_{(E^0, \beta ^*)}= 0,\\ \frac{{\partial ^2}{f_1}}{\partial {x_2}\partial {\beta }}(E^0, \beta ^*)&=\frac{\partial }{\partial x_2}\left( x_1 x_2\right) \Big |_{(E^0, \beta ^*)}= \frac{\lambda (\mu +\theta )}{\gamma \theta }. \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned}{}&a = {v_2}{u_1}{u_2} \frac{{\partial ^2}{f_1}}{\partial {x_1}\partial {x_2}}(E^0, \beta ^*) = -\alpha \beta ^*<0, \\&b = {v_2}{u_1} \frac{{\partial ^2}{f_1}}{\partial {x_1}\partial {\beta }} +{v_2}{u_2} \frac{{\partial ^2}{f_1}}{\partial {x_2}\partial {\beta }}= 0 + \frac{\lambda (\mu +\theta )}{\gamma \theta } >0. \end{aligned} \end{aligned}$$

Therefore, according to Theorem 4.1 in22 since \(a<0\) and \(b>0\) we conclude that there is a forward bifurcation (transcritical bifurcation) at \(\beta ^*\) (when \({{\mathcal {B}}}{{\mathcal {R}}}=1\)) for the waste plastic management model.

Sensitivity analysis

To find out how sensitive a function is to changes in the variables in its formula, the method of sensitivity analysis is used. This method uses a quantity called the normalized forward sensitivity index as a measure of the sensitivity of each variable. Since the basic reproduction number has a significant impact on the behavior of the model, we calculate the sensitivity indices of \({{\mathcal {B}}}{{\mathcal {R}}}\) for its variables, which are \(\beta\), \(\lambda\), \(\mu\), \(\alpha\), \(\gamma\), and \(\theta\).

The normalized forward sensitivity index of variable \({{\mathcal {B}}}{{\mathcal {R}}}\) for a variable v, is defined by \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{\mathcal {R}}_0}=\frac{v}{{{\mathcal {B}}}{{\mathcal {R}}}} \times \frac{\partial {{{\mathcal {B}}}{{\mathcal {R}}}}}{\partial v}\)23,24.

If \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{{\mathcal {B}}}{{\mathcal {R}}}}>0\) then the variable v has positive impact on \({{\mathcal {B}}}{{\mathcal {R}}}\) and the value of variable \({{{\mathcal {B}}}{{\mathcal {R}}}}\) increases by increasing the value of v. While \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{{\mathcal {B}}}{{\mathcal {R}}}}<0\) shows the reverse impact of v on \({{\mathcal {B}}}{{\mathcal {R}}}\); increasing the value of v implies decreasing in the value of \({\mathcal {R}}_0\). Also, the magnitude of \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{{\mathcal {B}}}{{\mathcal {R}}}}\) shows the proportion of changes in \({{\mathcal {B}}}{{\mathcal {R}}}\) with respect to v.

The normalized forward sensitivity indices for \({{\mathcal {B}}}{{\mathcal {R}}}\) are caculating as follows:

$$\begin{aligned} \begin{array}{ll} {{\mathcal {S}}}{{\mathcal {I}}}_\beta ^{{{\mathcal {B}}}{{\mathcal {R}}}}=1, & \quad {{\mathcal {S}}}{{\mathcal {I}}}_\lambda ^{{{\mathcal {B}}}{{\mathcal {R}}}}=1,\\ {{\mathcal {S}}}{{\mathcal {I}}}_\mu ^{{{\mathcal {B}}}{{\mathcal {R}}}}=\dfrac{\mu }{\mu +\theta }<1, & \quad {{\mathcal {S}}}{{\mathcal {I}}}_\alpha ^{{{\mathcal {B}}}{{\mathcal {R}}}}=-1,\\ {{\mathcal {S}}}{{\mathcal {I}}}_{\gamma }^{{{\mathcal {B}}}{{\mathcal {R}}}}=-1, & \quad {{\mathcal {S}}}{{\mathcal {I}}}_{\theta }^{{{\mathcal {B}}}{{\mathcal {R}}}}=-\dfrac{\mu }{\mu +\theta }<0. \end{array} \end{aligned}$$

We see that \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{{\mathcal {B}}}{{\mathcal {R}}}}>0\) for \(v=\beta , \lambda\) and \(\mu\), but \({{\mathcal {S}}}{{\mathcal {I}}}_v^{{{\mathcal {B}}}{{\mathcal {R}}}}<0\) for \(v=\alpha , \gamma\) and \(\theta\). Thus, any increase (or decrease) in values of \(\beta , \lambda\) and \(\mu\) has direct impact on the value of \({\mathcal {R}}_0\). However, any increase (or decrease) in values of \(v=\alpha , \gamma\) and \(\theta\) has reverse impact on the value of \({{\mathcal {B}}}{{\mathcal {R}}}\).

Numerical experiments

We consider the values \(\beta =0.15, \gamma =0.41, \alpha =0.65, \mu =0.4, \lambda =0.36, \theta =0.15\) for the parameters in model (1). For these values we have \({{\mathcal {B}}}{{\mathcal {R}}}=0.743<1\) and according to Theorem1 the equilibrium \(E^0=(0, 3.2195, 2.4000)\) is stable. Figure1 illustrates the solutions of the model with these parameter values and 20 different initial values for sub-populations. Moreover, the left picture in Fig.3 shows the solutions of the system with initial values as \(W_0=1.5\), \(M_0=2\), and \(R_0=1\).

Solutions of model for different initial values for sub-populations. The parameter values are \(\beta =0.15, \gamma =0.41, \alpha =0.65, \mu =0.4, \lambda =0.36, \theta =0.15\) which imply \({{\mathcal {B}}}{{\mathcal {R}}}=0.743<1\).

Full size image

Now, we change the parameter values to \(\beta =0.4, \gamma =0.21, \alpha =0.5, \mu =0.4, \lambda =0.66, \theta =0.2\). Here, we have \({{\mathcal {B}}}{{\mathcal {R}}}=7.5429>1\) and by Theorem2 the equilibrium \(E^*=(1.25, 3.44, 3.30)\) is stable. In Fig.2 the solutions of the system (1) has been depicted for 20 initial values for sub-populations. In the case of that the initial values are supposed as \(W_0=1.5\), \(M_0=2\), and \(R_0=1\), the right picture in Fig.3 shows the solutions of the model.

Solutions of model for different initial values for sub-populations. The parameter values are \(\beta =0.4, \gamma =0.21, \alpha =0.5, \mu =0.4, \lambda =0.66, \theta =0.2\) which imply \({{\mathcal {B}}}{{\mathcal {R}}}=7.5429>1\).

Full size image

Solutions of the model for two cases \({{\mathcal {B}}}{{\mathcal {R}}}<1\) (the left picture) and \({{\mathcal {B}}}{{\mathcal {R}}}>1\) (the right picture) with their theoretical solutions when initial values are same.

Full size image

For parameter values \(\gamma =0.41, \alpha =0.65, \mu =0.4, \lambda =0.36, \theta =0.15\) (as in the first example), if we solve the equation \({{\mathcal {B}}}{{\mathcal {R}}}=1\) for parameter \(\beta\) as the bifurcation parameter, we get \(\beta ^*=0.2019\). Thus for this value the model exhibit a forward bifurcation as it can be seen in bifurcation diagram presented in Fig.4.

Bifurcation diagram of the model for parameter \(\beta \in [0,2]\).

Full size image

Now, we investigate the impact of the parameters of the model on the dynamics of the waste management system by using sensitivity analysis of the basic reproduction number \({{\mathcal {B}}}{{\mathcal {R}}}\) with respect to each parameter as it was explained in Section“Sensitivity analysis”. Let us consider the parameter values in Table1 for parameters in the model introduced by system (1) and their corresponding sensitivity indices with respect to \({{\mathcal {B}}}{{\mathcal {R}}}\) as a differentiable function.

Full size table

Normalized sensitivity indices for model parameters.

Full size image

The normalized sensitivity indices for parameters have been shown as a chart in Fig.5. According to the Table1 we find that the sensitivity indices for parameters \(\beta\), \(\lambda\) and \(\mu\) have positive value and their impact on \({{\mathcal {B}}}{{\mathcal {R}}}\) is direct. While, the parameters \(\alpha\), \(\gamma\) and \(\theta\) have negative sensitivity indices and thus they have reverse impact on \({{\mathcal {B}}}{{\mathcal {R}}}\). Thus for example, an increase (decrease) in values of \(\lambda\) and \(\mu\) by %10 yields to a %10 and %8.889 increase (decrease) in \({{\mathcal {B}}}{{\mathcal {R}}}\), respectively. For instance, for parameter values in Table1 we have \({{\mathcal {B}}}{{\mathcal {R}}}=42.4286\) and if we decrease \(\lambda\) by %10, the basic reproduction number also decreases by %10 and becomes \({{\mathcal {B}}}{{\mathcal {R}}}=38.1857\). On the other hands, a %10 increase (decrease) for example in \(\gamma\) and \(\theta\) causes a %10 and %8.889 decrease (increase) in \({{\mathcal {B}}}{{\mathcal {R}}}\). For example, if the value of \(\theta\) is increased by %20 (to \(\theta =0.06\)), then the value of \({{\mathcal {B}}}{{\mathcal {R}}}\) decreases by %17.778 and becomes \({{\mathcal {B}}}{{\mathcal {R}}}=34.8763\). Therefore, according to Table1 we find that either decreasing the rates of waste to marine (\(\beta\)) and new waste (\(\lambda\)) or increasing the recycle rate (\(\alpha\) and \(\gamma\)), have the most impact in reducing the value of \({{\mathcal {B}}}{{\mathcal {R}}}\) and as a result most impact on controlling the amount of marine debris. The impact of parameters \(\beta\) and \(\alpha\) on the model have also been depicted in Figs.6 and 7, respectively. The parameter values are assumed as \(\beta =0.75, \gamma =0.21, \alpha =0.5, \mu =0.4, \lambda =0.66, \theta =0.05\) and initial values are \(W_0=1.5\), \(M_0=2\), and \(R_0=1\). In Fig.6 the values of \(\beta\) change in interval [0.1,2.1] and it is seen that by increasing \(\beta\) ,the final solution corresponding to the amount of the marine debris (M) leaves the zero and will take positive values. Indeed, the stability of the model changes from \(E^0\) to \(E^*\). With the same terms and for values of \(\alpha\) in [0.1,0.9], the solutions of the model have been shown in Fig.7. By increasing the value of \(\alpha\), we observe that the values of M finally take zero value. This shows that by increasing \(\alpha\) the equilibrium point \(E^*\) becomes unstable and \(E^0\) becomes \(E^*\) stable.

Solutions of the model for \(\gamma =0.21, \alpha =0.5, \mu =0.4, \lambda =0.66, \theta =0.05\) and \(\beta \in [0.1,2.1]\).

Full size image

Solutions of the model for \(\beta =0.75, \gamma =0.21, \mu =0.4, \lambda =0.66, \theta =0.05\) and \(\alpha \in [0.1 , 0.9]\).

Full size image

Conclusions

In this paper, we studied the waste plastic management (WPM) system in the ocean through a mathematical three-compartmental model. The basic reproduction number \({{\mathcal {B}}}{{\mathcal {R}}}\), and two equilibria of the model were found, in addition to positivity of solutions of model. The dynamics of the model was determined in terms of threshold \({{\mathcal {B}}}{{\mathcal {R}}}\); if \({{\mathcal {B}}}{{\mathcal {R}}}<1\), it was proved that the equilibrium \(E^0\) is globally stable, while the equilibrium \(E^*\) exists and it is stable when \({{\mathcal {B}}}{{\mathcal {R}}}>1\). Also, it was shown that the model exhibit a forward (transcritical) bifurcation at \({{\mathcal {B}}}{{\mathcal {R}}}=1\). The sensitivity of the model has been analyzed by calculating normalized forward sensitivity index for each parameter for \({{\mathcal {B}}}{{\mathcal {R}}}\) and it was concluded that decreasing the rates of waste to marine (\(\beta\)) and new waste (\(\lambda\)) or increasing the recycle rate (\(\alpha\) and \(\gamma\)), are most effective for controlling the amount of marine debris. Finally, the theoretical results were discussed also numerically for different parameter values and various initial values for sub-populations via several examples, solutions of model and bifurcation diagram.

The global stability of the equilibrium point \(E^*\) has been proved for the case that the marine debris recycling rate (\(\alpha\)) and the direct recycling rate of waste materials (\(\gamma\)) are equal. Constructing a more appropriate Lyapunov function that does not impose such an additional condition on stability can be the subject of future studies. Investigating the impact of seasonality on the system behavior may also complement the present study, since the waste rate to become marine (\(\beta\)) can be considered as a periodic function.

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Al Nuwairan, M., Sabir, Z., Asif Zahoor Raja, M. & Aldhafeeri, A. An advance artificial neural network scheme to examine the waste plastic management in the ocean. AIP Adv.12(4), 045211 (2022).

    Article ADS Google Scholar

  2. Izadi, M., Parsamanesh, M. & Adel, W. Numerical and stability investigations of the waste plastic management model in the ocean system. Mathematics 10(23), 4601 (2022).

    Article Google Scholar

  3. Thirthar, A. A., Jawad, Sh., Shah, K. & Abdeljawad, Th. How does media coverage affect a COVID-19 pandemic model with direct and indirect transmission?. J. Math. Comput. Sci. 35(2), 169–181 (2024).

    Article Google Scholar

  4. Mondal, B., Thirthar, A. A., Sk, N., Alqudah, M. A. & Abdeljawad, T. Complex dynamics in a two species system with Crowley–Martin response function: Role of cooperation, additional food and seasonal perturbations. Math. Comput. Simul. 221, 415–434 (2024).

    Article MathSciNet Google Scholar

  5. Thirthar, A. A., Jawad, S., Majeed, S. J. & Nisar, K. S. Impact of wind flow and global warming in the dynamics of prey-predator model. Results Control Optim. 15, 100424 (2024).

    Article Google Scholar

  6. Thirthar, A. A. A mathematical modelling of a plant-herbivore community with additional effects of food on the environment. Iraqi J. Sci 64(7), 3551–5366 (2023).

    Google Scholar

  7. Lu, Z., Chi, X. & Chen, L. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36(9–10), 1039–1057 (2002).

    Article MathSciNet Google Scholar

  8. Brauer, F. Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298(2), 418–431 (2004).

    Article MathSciNet Google Scholar

  9. Moneim, I. & Greenhalgh, D. Threshold and stability results for an SIRS epidemic model with a general periodic vaccination strategy. J. Biol. Syst. 13(02), 131–150 (2005).

    Article Google Scholar

  10. Parsamanesh, M. Global dynamics of an sivs epidemic model with bilinear incidence rate. Ital. J. Pure Appl. Math. 40, 544–557 (2018).

    Google Scholar

  11. Parsamanesh, M. & Farnoosh, R. On the global stability of the endemic state in an epidemic model with vaccination. Math. Sci. 12, 313–320 (2018).

    Article MathSciNet Google Scholar

  12. Hethcote, H. W. The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000).

    Article ADS MathSciNet Google Scholar

  13. Van den Driessche, P. & Watmough, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002).

    Article MathSciNet PubMed Google Scholar

  14. Ortega, J. M. Matrix theory: A second course (Springer, 2013).

    Google Scholar

  15. Shub, M. Global stability of dynamical systems (Springer, 2013).

    Google Scholar

  16. La Salle, J. & Lefschetz, S. Stability by Liapunov’s direct method with applications (Elsevier, 2012).

  17. Vargas-De-León, C. Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size. Foro-Red-Mat. Revista Electrónica de Contenido Matemático 26(5), 1–12 (2009).

    Google Scholar

  18. Vargas-De-Leon, C. On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos Solitons Fractals 44(12), 1106–1110 (2011).

    Article ADS Google Scholar

  19. Parsamanesh, M. Global stability analysis of a veisv model for network worm attack. Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 79(4), 179–188 (2017).

    MathSciNet Google Scholar

  20. Parsamanesh, M. & Erfanian, M. Global dynamics of an epidemic model with standard incidence rate and vaccination strategy. Chaos Solitons Fractals 117, 192–199 (2018).

    Article ADS MathSciNet Google Scholar

  21. Cangiotti, N., Capolli, M., Sensi, M. & Sottil, S. A survey on lyapunov functions for epidemic compartmental models. Boll. dell’Unione Mat. Ital. 17, 241–257 (2023).

    Article MathSciNet Google Scholar

  22. Castillo-Chavez, C. & Song, B. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004).

    Article MathSciNet PubMed Google Scholar

  23. Chitnis, N., Hyman, J. M. & Cushing, J. M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272 (2008).

    Article MathSciNet PubMed Google Scholar

  24. Abidemi, A., Abd Aziz, M. & Ahmad, R. Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation. Chaos Solitons Fractals 133, 109648 (2020).

    Article MathSciNet Google Scholar

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

  1. Department of Mathematics, Technical and Vocational University, Tehran, Iran

    Mahmood Parsamanesh

  2. Department of Applied Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

    Mohammad Izadi

Authors

  1. Mahmood Parsamanesh

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  2. Mohammad Izadi

    View author publications

    You can also search for this author in PubMedGoogle Scholar

Contributions

M.P.: Conceptualization, Writing- Original draft preparation, Software, Investigation, Supervision. M.I.: Visualization, Investigation, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Mahmood Parsamanesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean (8)

Cite this article

Parsamanesh, M., Izadi, M. Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean. Sci Rep 14, 20328 (2024). https://doi.org/10.1038/s41598-024-71182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-024-71182-z

Keywords

  • Waste plastic management
  • Compartmental model
  • Basic reproduction number
  • Bifurcation
Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean (2024)

FAQs

How many metric tons of plastic enter the ocean each year and why is this a problem? ›

How much plastic pollution is there? 12 million tonnes of plastic finds its way into the ocean every single year. 9.5 million tonnes of this enters the ocean from the land with 1.75 tonnes being chucked into the sea directly from the fishing a shipping industry.

How does plastic reach the ocean and how does it circulate in oceans around the world? ›

Rainwater and wind carries plastic waste into streams and rivers, and through drains. Drains lead to the ocean! Careless and improper waste disposal is also a big contributor – illegal dumping of waste adds greatly to the plastic surge in our seas.

What are the problems with plastic in the ocean? ›

Marine plastic pollution has impacted at least 267 species worldwide, including 86% of all sea turtle species, 44% of all seabird species and 43% of all marine mammal species. The impacts include fatalities as a result of ingestion, starvation, suffocation, infection, drowning, and entanglement.

How much plastic waste ends up in the ocean? ›

Around 0.5% of plastic waste ends up in the ocean

The world produces around 350 million tonnes of plastic waste each year. Estimates vary, but recent high-quality studies suggest that between 1 and 2 million tonnes of plastic enter the oceans annually. That means 0.5% of plastic waste ends up in the ocean.

How many tons of plastic will be in the ocean by 2050? ›

Starting with an estimate that 150 million tonnes of plastic are already polluting the world's oceans, and that "leakage" adds at least 9.1 million tonnes more each year — a figure that is said to be growing by five per cent annually — the MacArthur report calculates there will be 850-950 million tonnes of ocean ...

Does 1 in 3 fish caught for human consumption contain plastic? ›

1 in 3 fish caught for human consumption contains plastic. Plastic microbeads are estimated to be one million times more toxic than the seawater around it. Products containing microbeads can release 100,000 tiny beads with just one squeeze.

How can humans reduce the amount of plastic in the ocean? ›

Cut back on single-use plastic

Over time, these simple swaps can add up to a lot less plastic in our landfills and ocean. Here's what you can do: Use reusable coffee cups and shopping bags instead of single-use ones. Reusable silicone bags and other durable containers can replace single-use plastic sandwich bags.

Where does most plastic in the ocean come from? ›

Rivers are the main source of ocean plastic pollution, but there is another major source of plastic in the Great Pacific Garbage Patch — fishing gear.

What happens to plastic waste when it enters the ocean? ›

Unlike some other kinds of waste, plastic doesn't decompose. That means plastic can stick around indefinitely, wreaking havoc on marine ecosystems. Some plastics float once they enter the ocean, though not all do. As the plastic is tossed around, much of it breaks into tiny pieces, called microplastics.

What is the #1 threat to the ocean? ›

1. Ocean noise. Often overlooked because it can't be seen, ocean noise is a significant threat to a number of marine species.

Why can't we fix plastic pollution? ›

The reality is, most plastic was never designed to be recyclable, and it will never be recycled. What's more, plastic pollution is a lot worse than the straws you find on the beach. The real impacts of plastic are catastrophic for our health and our climate. Enough is enough.

What is the number one cause of plastic in the ocean? ›

The majority of plastic pollution in the ocean is caused by littering: we buy or use disposable plastic items (food wrappings, plastic bags, razors, bottles, etc.)

How to solve plastic in the ocean? ›

What ways can I help reduce plastic pollution?
  1. 1) Recycle effectively. ...
  2. 2) Reduce single-use plastic usage. ...
  3. 3) Be aware of products that include microplastics. ...
  4. 4) Volunteer to reduce plastic pollution. ...
  5. 5) Sign petitions and join campaigns that reduce ocean pollution. ...
  6. 6) Support charities that are challenging plastic pollution.

Which country uses the most plastic? ›

The U.S. generated more than 42 million metric tons of plastic waste in 2016, making it by far the world's biggest plastic waste generator. In comparison, China produced a a total of 21.6 million metric tons of plastic waste in 2016, which amounted to an average of 15.67 kilograms per capita.

Who is responsible for plastic pollution? ›

There are three parties that bear this responsibility. Governments that can make and enforce rules, companies that produce or use plastics, and consumers. Each party has its own responsibility.

Why is plastic waste a problem? ›

Unlike other materials, plastic does not biodegrade. It can take up to 1,000 years to break down, so when it is discarded, it builds up in the environment until it reaches a crisis point. This pollution chokes marine wildlife, damages soil and poisons groundwater, and can cause serious health impacts.

When did plastic become a problem? ›

Many of our plastic problems began in the post-war period, when plastic began to replace the more expensive paper, glass and metal materials used in throwaway items, such as consumer packaging.

What are the harmful effects of plastic? ›

Many chemicals found in plastics are endocrine disruptors, which can cause an imbalance in hormones, reproductive issues, and even cancer. Also, microplastics can leach harmful chemicals such as bisphenol A (BPA) and phthalates. Both of these types of chemicals are known to interfere with hormones.

Top Articles
9.3: Economic Profit
Economic Profit: Definition and How to Calculate | The Motley Fool
Po Box 7250 Sioux Falls Sd
Urist Mcenforcer
Aadya Bazaar
Acts 16 Nkjv
라이키 유출
Concacaf Wiki
Lesson 2 Homework 4.1
Es.cvs.com/Otchs/Devoted
Taylor Swift Seating Chart Nashville
Blue Beetle Showtimes Near Regal Swamp Fox
Caliber Collision Burnsville
Truck Trader Pennsylvania
Simplify: r^4+r^3-7r^2-r+6=0 Tiger Algebra Solver
Aldi Süd Prospekt ᐅ Aktuelle Angebote online blättern
R Personalfinance
Craigslist Maui Garage Sale
Is The Yankees Game Postponed Tonight
Our History
20 Different Cat Sounds and What They Mean
Curver wasmanden kopen? | Lage prijs
Pearson Correlation Coefficient
Kingdom Tattoo Ithaca Mi
Happy Homebodies Breakup
Telegram Voyeur
Poochies Liquor Store
Bleacher Report Philadelphia Flyers
Xpanas Indo
Shia Prayer Times Houston
Elanco Rebates.com 2022
Dairy Queen Lobby Hours
Missing 2023 Showtimes Near Mjr Southgate
Gwen Stacy Rule 4
Pickle Juiced 1234
Prima Healthcare Columbiana Ohio
Police Academy Butler Tech
Clark County Ky Busted Newspaper
Second Chance Apartments, 2nd Chance Apartments Locators for Bad Credit
Nsav Investorshub
Aurora Il Back Pages
Homeloanserv Account Login
Bekkenpijn: oorzaken en symptomen van pijn in het bekken
Yale College Confidential 2027
Waco.craigslist
Craigslist Sarasota Free Stuff
Puss In Boots: The Last Wish Showtimes Near Valdosta Cinemas
300 Fort Monroe Industrial Parkway Monroeville Oh
Adams County 911 Live Incident
Ok-Selection9999
Guidance | GreenStar™ 3 2630 Display
Comenity/Banter
Latest Posts
Article information

Author: Pres. Lawanda Wiegand

Last Updated:

Views: 5287

Rating: 4 / 5 (71 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Pres. Lawanda Wiegand

Birthday: 1993-01-10

Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

Phone: +6806610432415

Job: Dynamic Manufacturing Assistant

Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.